

NJ-M-T1000

高精度双轴倾角传感器

1. 概述

NJ-M-T1000系列产品是纳杰微电子公司推出的基于MEMS (微机电系统) 传感器件的高精度倾角传感器,具有低功耗、小型化等特点。此产品在非线性、重复性、温度漂移、噪声、抗冲击等性能上具有优越的表现,是目前行业内具有竞争优势的一款产品。

2. 产品特性

- 宽工作电压: 9~36 VDC
- 自识别智能双轴 (X-Y轴) 倾角测量 (单轴可 洗)
- 最大工作量程: ±90°
- 纳杰自主i-AccuracyTM算法: 消除非线性度、
 X-Y-Z轴正交误差、象限误差和安装误差
- 高精度标定: 0.01° (±90°), 含重复性
- 分辨率: 0.001° (±90°)
- 零点漂移: ±0.002°/℃
- 数据输出方式:
 - RS485 (默认)、RS232 (可选)
 - 可接受模拟输出或4-20mA电流输出订制

- 波特率: 4800~115200 (默认)
- 高可靠军工插头: 微型ODU航空插头
- 输出数据频率: 5~100Hz
- 外壳:硬铝合金
- 防护等级: IP67
- 工作温度: -40~+85℃
- 可接受ODM、OEM定制

3. 典型应用领域

- 高铁轨距仪测平
- 高塔或高楼监测
- 桥梁与大坝监测

- 重工机械
- 平台稳定
- 高精度激光平台设备

 $\underline{www,jxnajie.com}$ 1/6 V1.0

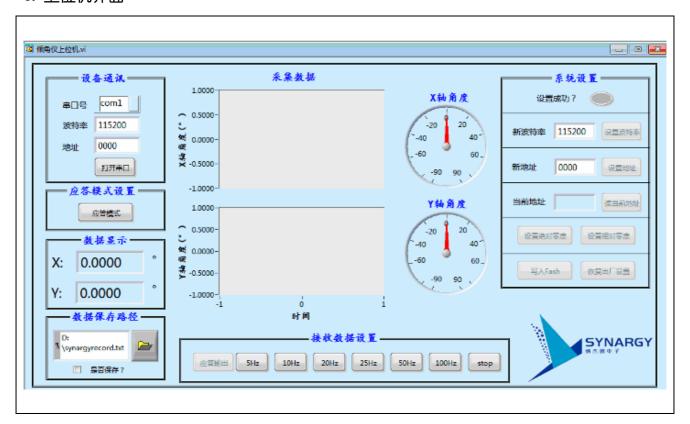
4. 技术指标

性能指标							
测量范围 (°)	±5	±10	±30	±60	±90		
测量轴	X-Y	X-Y	X-Y	X-Y	X-Y		
输出数据频率 (Hz)	5-100	5-100	5-100	5-100	5—100		
分辨率 (°) ^[1]	0.001	0.001	0.001	0.001	0.001		
精度 (°) ^[1]	0.005	0.005	0.005	0.008	0.01		

备注[1]: 室温条件下

电气和环境指标					
电源电压	9 ~ 36VDC				
供电电流	<30mA@24V				
数据更新率	100Hz (可定制)				
数据输出	RS232(RS485可选)				
波特率	115200 (默认。波特率可修改,范围4800~115200)				
启动时间	0.75 s				
工作环境温度	-40 ~ +85 °C				
存储环境温度	-50 ∼+125 °C				
防护等级	IP67				

物理指标				
尺寸	93.8 mm X 55.5 mm X 20 mm			
重量	约200g			


RS232输出方式				
名称	说明			
VCC	输入电源正极			
GND	输入电源地			
RX	串□数据接收			
TX	串□数据发送			
GND	接地			

RS485输出方式				
名称	说明			
VCC	输入电源正极			
GND	输入电源地			
485-	485负输入端			
485+	485正输入端			
K-GND	壳体接地			

6. 上位机界面

该上位机界面简洁,便于客户操作,角度可在波形图和仪表盘中显示。通过上位机可进行设备通讯及系统设置。应答模式设置分为主动模式和被动模式,主动模式下部分按钮功能禁用。有关上位机的操作可参考另一文档"上位机操作说明"。

7. RS232 通讯协议

7.1、 RS232 通讯格式: 8 位数据位, 1 位停止位, 无校验

7.2、 指令格式:

发送指令

前导码 16 位	从机地址 16 位	指令长度8位	命令码8位	数据域	和校验码 16 位
4E4AH	ADDH ADDL	LENTH	COMAND	DATA	SUMH SUML

返回数据

前导码 16 位	从机地址 16 位	指令长度8位	返回码8位	数据域	和校验码 16 位
4E4AH	ADDH ADDL	LENTH	COMAND+80H	DATA	SUMH SUML

前导码,固定为4EH4AH

从机地址, 高 8 位在前, 低 8 位在后, 出厂默认为 00H 00H

指令长度,长度 = (1+数据域字节个数)

命令码(返回码),详见指令说明

数据域, 详见指令说明

和校验码,前导码、从机地址、指令长度、命令码(返回码)、数据域之和,高8位在前,低8位在后

7.3、 指令说明 (以从机地址 0000H 为例):

7.3.1 读系统信息(只适用一主一从):

发送指令: 4E 4A FF FF 02 12 00 02 AA

返回数据: 4E 4A 00 00 05 92 00 00 07 01 01 37

说明:数据域00000701为从机地址高和低、波特率、系统版本

7.3.2 修改从机地址:

发送指令: 4E 4A 00 00 05 13 00 00 01 01 00 B2

返回数据: 4E 4A 00 00 03 93 01 01 01 30

说明:

发送指令数据域 00 00 01 01 为老从机地址高和低, 新从机地址高和低

接收指令数据域 01 01 为新从机地址高和低

7.3.3 修改波特率:

数据域值	02H	03H	04H	05H	06H	07H
波特率 BPS	4800	9600	19200	38400	57600	115200

出厂默认为 115200BPS

发送指令: 4E 4A 00 00 02 21 07 00 C2 返回数据: 4E 4A 00 00 02 A1 07 01 42

说明:发送和接收指令的数据域 07 分别为要修改的波特率代号及修改完的波特率代号

NJ-M-T1000

7.3.4 读角度值:

命令码	30H	31H	32H	33H	34H	35H	36H	3FH
输出模式	应答	5HZ	10HZ	20HZ	25HZ	50HZ	100HZ	停止

3FH 指令针对除应答模式以外的自动输出模式而言

发送指令: 4E 4A 00 00 02 30 00 00 CA

说明:命令码30为应答模式

返回数据: 4E 4A 00 00 09 B0 3E D2 A2 B4 42 08 20 6C 04 8D

说明:

数据域 3E D2 A2 B4 为 X 轴 float 浮点型的角度值, 高位在前, 低位在后, 为 0.4113°

数据域 42 08 20 6C 为 Y 轴 float 浮点型的角度值, 高位在前, 低位在后, 为 34.0316°

注:读角度指令一经设置马上会写入 flash (由于 flash 寿命有限,禁止频繁的改变输出模式),当设置成自动输出模式时,上电后的 10S 不会输出,10S 后才会根据断电之前的记忆自动输出。

7.3.5 读温度:

发送指令: 4E 4A 00 00 02 40 00 00 DA

返回数据: 4E 4A 00 00 05 C0 41 4E D5 37 02 F8

说明:数据域 41 4E D5 37 为 float 型的温度值,高位在前,低位在后,为温度值 12.9℃

7.3.6 设置相对零度:

发送指令: 4E 4A 00 00 02 91 00 01 2B 返回数据: 4E 4A 00 00 02 11 55 01 00

说明:调整好认为0°的角度后。发送该指令。接收指令数据域55为设置成功

7.3.7 设置绝对零度:

发送指令: 4E 4A 00 00 02 92 00 01 2C 返回数据: 4E 4A 00 00 02 12 55 01 01

说明:恢复出厂时的0°设定,接收指令数据域55为设置成功

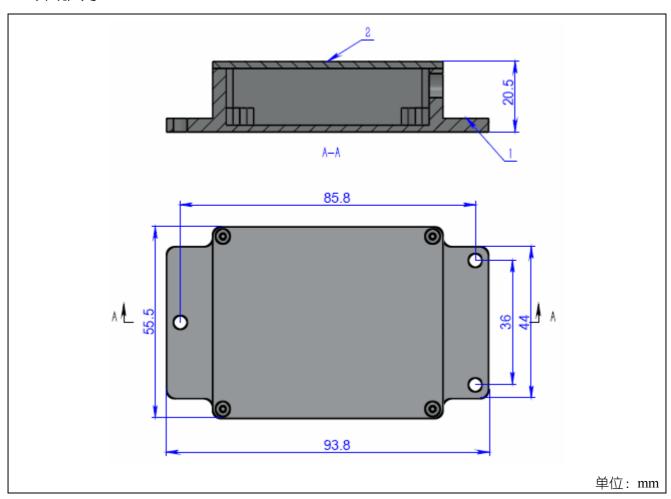
7.3.8 恢复工厂设置:

发送指令: 4E 4A 00 00 02 F0 00 01 8A 返回数据: 4E 4A 00 00 02 70 55 01 5F

说明: 当数据设置乱套时,发送改指令恢复出厂设置,接收指令数据域55为设置成功

7.3.9 保存数据 (写入 flash):

发送指令: 4E 4A 00 00 02 F1 00 01 8B 返回数据: 4E 4A 00 00 02 71 55 01 60


说明:设置完波特率、从机地址、相对零度等参数后,发送该指令,使数据写入flash,

断电保存,接收指令数据域 55 为设置成功

8. 外观尺寸

9. 修订记录

修订	□期	说明
V1.0	2016年3月	初始版本